Flight dynamics-I
Chapter-9

Chapter-9
Performance analysis — V- Manoeuvres
(Lectures 28 to 31)

Keywords : Flights along curved path in vertical plane — loop and pull out ;
load factor ; steady level co-ordinated-turn - minimum radius of turn, maximum
rate of turn; flight limitations ; operating envelop; V-n diagram
Topics
9.1 Introduction
9.2 Flight along a circular path in a vertical plane (simplified loop)
9.2.1 Equation of motion in a simplified loop
9.2.2 Implications of lift required in a simplified loop
9.2.3 Load factor
9.2.4 Pull out
9.3 Turning flight
9.3.1 Steady, level, co-ordinated-turn
9.3.2 Equation of motion in steady, level, co-ordinated-turn
9.3.3 Factors limiting radius of turn and rate of turn
9.3.4 Determination of minimum radius of turn and maximum rate of turn
at a chosen altitude
9.3.5 Parameters influencing turning performance of a jet airplane
9.3.6 Sustained turn rate and instantaneous turn rate
9.4 Miscellaneous topics — flight limitations, operating envelop and V-n
diagram
9.4.1 Flight limitations
9.4.2 Operating envelop
9.4.3 V-ndiagram

Exercises


Free Hand

Free Hand


Flight dynamics-I
Chapter-9

Chapter 9
Lecture 28

Performance analysis V — Manoeuvres — 1
Topics

9.1 Introduction
9.2 Flight along a circular path in a vertical plane (simplified loop)
9.2.1 Equation of motion in a simplified loop
9.2.2 Implications of lift required in a simplified loop
9.2.3 Load factor
9.2.4 Pull out
9.3 Turning flight
9.3.1 Steady, level, co-ordinated-turn

9.3.2 Equation of motion in steady, level, co-ordinated-turn

9.1 Introduction

Flight along a curved path is known as a manoeuvre. In this flight the
radial acceleration is always present even if the tangential acceleration is zero.
For example, from particle dynamics (Ref.1.2) we know that when a body moves

with constant speed along a circle it is subjected to a radial acceleration equal to

2
(V /r)or w?r where, V is the speed, r is the radius of curvature of the path and

o is the angular velocity (o = V / r). In a general case, when a particle moves
along a curve it has an acceleration along the tangent to the path whose

magnitude is equal to the rate of change of speed ( V ) and an acceleration along

2
the radius of curvature whose magnitude is (V /r). Reference 1.1, chapter 1 may
be referred to for details. In order that the body has these accelerations a net
force, having components along these directions, must act on the body. For

example, in the simpler case of a body moving with constant speed along a
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circle, there must be a centripetal force of magnitude mw?r in the radially inward
direction; m is the mass of the body.

For the sake of simplicity, the motions of an airplane along curved paths
confined to either the vertical plane or the horizontal plane, are only considered
here. The flight along a closed curve in a vertical plane is refered to as loop and
that in the horizontal plane as turn. Reference 2.1 and Ref. 1.12, chapter 2, may
be referred to for various types of loops and turns. However, the simpler cases
considered here illustrate important features of these flights.

9.2 Flight along a circular path in vertical plane (simplified loop)

Consider the motion of an airplane along a circular path of radius r with
constant speed V. The forces acting on the airplane at various points of the flight
path are shown in Fig.9.1. Note also the orientation of the airplane at various
points and the directions in which D and L act; in a flat earth model W always

acts in the vertically downward direction.
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Note : The flight path is circular. Please adjust the resolution of your

monitor so that the flight path looks circular.

Fig.9.1 Flight along a loop with constant radius and speed

2
(Note: The quantity wv. is the magnitude of the inertia force at various points)
r

9.2.1 Equations of motion in a simplified loop
The equations of motion, when the airplane is at specified locations, can be

written down as follows.
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wv?2
At point A : T-D=0;L-W= (9.1)
gr
2
At Point B: T-D-W=0;L=ﬂv— (9.2)
g r
2
At point C : T-D=O;L+W=ﬂv— (9.3)
g r
wv?2
AtpointD: T-D +W=0;L= (9.4)
ar
At a general point G the equations of motion are:
2
T-D-Wsiny=O;L+Wcos;/=WV (9.5)
ar

Note that the Egs. (9.1) to (9.4) for points A, B, C and D can be obtained from

Egs. (9.5) by substituting y as 180°, 90°, 0° and 270° respectively.

Remarks:

i) If the tangential velocity is not constant during the loop then the first equation of
Eqgs.(9.5) would become:

T-D-Wsiny=(W/g)a, wherea=dV/dt (9.6)
i) From Egs. (9.1 to 9.5) it is observed that the lift required and the thrust
required during a loop with constant ‘r and ‘V’ change rapidly with time. It is
difficult for the pilot to maintain these values and the actual flight path is

somewhat like the one shown in Fig. 9.2.
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Fig.9.2 Shape of a normal loop

9.2.2 Implications of lift required during simplified loop
It is observed, that at the bottom of the loop i.e. point ‘A’ in Fig. 9.1, the lift

2 V2 2
orL=W|1+—|. Theterm (V /gr) could be

required is equalto W +

ar ar

much larger than 1 and the lift required in a manoeuvre could be several times

the weight of the airplane. As an illustration, let the flight velocity be 100 m/s and

the radius of curvature be 200 m, then the term (V2/ gr) is equal to 5.1. Thus the
total lift required at point ‘A’ is 6.1 W. In order that an airplane carries out the
manoeuvres without getting disintegrated, its structure must be designed to
sustain the lift produced during manoeuvres. Secondly, when lift produced is
high, the drag would also be high and the engine must produce adequate output.

Further, lift coefficient cannot exceed Cimax, and as such no manoeuvre is

possible at V= V.

9.2.3 Load factor
The ratio of the lift to the weight is called ‘Load factor’ and is denoted by ‘n’ i.e.

n=(L/W) (9.7)
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A flight with a load factor of n is called ‘ng’ flight. For example, a turn (see
example 9.2) with load factor of 4 is referred to as a 4g turn. In level flight, n
equals 1 and itis a 1g flight.
Higher the value of n, greater would be the strength required of the structure and
consequently higher structural weight of the airplane. Hence, a limit is prescribed
for the load factor to which an airplane can be subjected to. For example, the civil
airplanes are designed to withstand a load factor of 3 to 4 and the military
airplanes to a load factor of 6 or more. The limitation on the military airplane
comes from the human factors namely, a pilot subjected to more than 6g may
black out during the manoeuvre which is an undesirable situation.
To monitor the load factor, an instrument called ‘g-meter’ is installed in the
cockpit.
9.2.4 Pull out

The recovery of an airplane from a dive or a glide is called a pull out
(Fig. 9.3). The dive is an accelerated descent while the pull out phase can be

regarded as a flight along an arc of a circle (See example 9.1).

Fig.9.3 Pull out from dive
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Example 9.1

An airplane with a wing area of 20 m? and a weight of 19,620 N dives with

engine switched off, along a straight line inclined at 60° to the horizontal. What is

the acceleration of the airplane when the flight speed is 250 kmph? If the airplane

has to pull out of this dive at a radius of 200 m, what will be the lift coefficient

required and the load factor? Drag polar is given by: CD =0.035 + 0.076 CE and

the manouevre takes place around an altitude of 2 km.

Solution:

From Fig. 9.3 the equations of motion in the dive can be written as follows.

L- Wcosy = 0; Wsiny-D = ﬂa
g

y=60°, Hence, cosy=0.5and siny = 0.866
Consequently, L = 19620 x 0.5 =9810 N

The drag of the airplane(D) can be obtained by knowing Cp which depends on

C -

C :2—L2
pSV
V =250 kmph =69.4 m/s, p at 2 km = 1.0065 kg / m3
Hence,
2 %9810

C = 5 = 0.2024
1.0065 x 20 x 69.4

Consequently, Cp =0.035 + 0.076 x 0.20242 = 0.03811

The drag D= LC_D =9810 x 0.03811
CL 0.2024

=1847.3N

Hence, (W/g)a=Wsiny-D =19620 x 0.866 - 1847.3 = 15144.1 N

Or a= 15144.1 x 9.81/ 19620 = 7.57 m/s?.
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To obtain the lift required during the pull out, let us treat the bottom part of the
flight path during the pull out as an arc of a circle.
From Egs. (9.1) to (9.5), the lift required is maximum at the bottom of the loop
and is given by:

wv?2
+

ar

L=W

1 x69.42
9.81 200

or L =19620 x [1+—
Or L=19620 x 3.45 Then,
19620 x 3.45x 2

CL= 5 =1.396
1.0065 x 20 x 69.4

Remarks:
i) The maximum load factor in the above pull out is 3.45. The value of lift

coefficient required is 1.396. This value may be very close to CLmax and the

parabolic drag polar may not be valid.

i) Since C_ cannot exceed C___, alarge amount of lift cannot be produced at low

speeds. Thus maximum attainable load factor (n ) at a speed is:

maxattainable

_ 2
=(12)pV2SC__I W

nmaxattainable

At stalling speed the value of n is only one.
9.3 Turning flight

When an airplane moves along an arc of a circle about a vertical axis then
the flight is called a turning flight. When the altitude of the airplane remains
constant in such a flight, it is called a level turn. In order that a turning flight is
possible, a force must act in the direction of the radius of curvature. This can be
done by banking the airplane so that the lift vector has a component in the
horizontal direction. It may be added that the side force produced by deflecting
the rudder is not large. It also causes considerable amount of drag, which is
undesirable.
9.3.1 Steady, level, co-ordinated-turn

If there is no tangential acceleration i.e. the flight speed is constant, then

the flight is called a steady turn. If the altitude remains constant then the flight is
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called a level turn. When the airplane executes a turn without sideslip, it is called
co-ordinated-turn. In this flight the X-axis of the airplane always coincides with
the velocity vector. The following two aspects may also be noted regarding the
steady, level, co-ordinated-turn.
(a) The centripetal force needed to execute the turn is provided by banking the
wing. The horizontal component of the lift vector provides the centripetal force
and the vertical component balances the weight of the airplane. Hence, the lift in
a turn is greater than the weight.
(b) An airplane executing a turn, does produce a sideslip.
Because of the aforesaid two factors, a pilot has to apply appropriate deflections
of elevator and rudder to execute a co-ordinated-turn.

A co-ordinated-turn is also called ‘Correctly banked turn’. In this chapter,

the discussion is confined to the steady level, co-ordinated-turn.

9.3.2 Equations of motion in steady level co-ordinated-turn
The forces acting on an airplane in steady, level, co-ordinated-turn are
shown in Fig.9.4. The equations of motion in such a flight can be obtained by

resolving the forces in three mutually perpendicular directions.

L
D%

Fig.9.4 Turning flight
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As the turn is a steady flight: T-D =0. (9.8)
As the turn is a level flight: W — L cos ¢ =0. (9.9)
As the turn is co-ordinated which implied that, there is no unbalanced sideforce.
2
L sing = w vz (9.10)
g r

where ¢ is the angle of bank and r is the radius of turn.

Remarks:
i) From the above equations it is noted that L = W / cos ¢. Hence, in aturn L is
larger than W. Consequently, drag will also be larger than that in a level flight at
the same speed. The load factor n is equal to 1/ cos ¢ and is higher than 1.

i) From Egs. (9.9) and (9.10), the radius of turn r is given by:

_wW v 2

r RN o
g Lsing gtang

(9.11)

Noting that, cos ¢ = 1 gives tan ¢ = +n’-1 and
n

2

r= v (9.11a)
gvn?-1
The rate of turn, denoted by (g ), is given by:
. _V V2 g tang
p=—=V/ = (9.12)
r gtang V

Noting tan ¢ = /n*-1 gives :

. gyn®-1

= 9.12a
7 v ( )

(iii) In some books, the radius of turn is denoted by ‘R’. However, herein the letter
‘R’ is used to denote range, and to avoid confusion, the radius of turn is denoted

by ‘r.
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Example 9.2

An airplane has a jet engine which produces a thrust of 24,525 N at sea

level. The weight of the airplane is 58,860 N. The wing has an area of 28 m~<,

2

zero-lift angle of — 2.2° and a slope of lift curve of 4.6 per radian. Find (a) the

radius of a correctly banked 4g level turn at the altitude where ¢ = 0.8 and the

wing incidence is 8% (b) time required to turn through 180° and

(c) thrust

required in the manoeuvre if the drag coefficient at this angle of attack be 0.055.

Solution:
The given data are: W = 58860 N, S = 28 m?, o = 8%,ag =-2.2°,

dCp
da
allowable n =4 and T = 24525 N at sea level.

= 4.6 per radian = % x 2n  per degree = 0.083 per degree,

Consequently,

_dC _ _
CL —E (G - GOL)_ 00803 (8 + 22) - 082
Ina4gturn L =4W = 1/2 pV?S C,

2 x4 x 58860
1.225%x 0.8 x 28 x 0.82

Hence, V = (2L /p SC )12 = (

Hence, tan ¢ = 3.873

2 2
144.6
Consequently, r = v = ( ) =550.3m
gtang 9.81x 3.873

Rate of turn = p = vV 1446 0.2627 rad /s

550.3
Hence, time to turn through 180° is equal to =11.95s

2627

The thrust required = T, = 1/2 p VS Cp

1/2
J =144.6 m/s.
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=(1/2) x 1.225 x 0.8 x 144.62 x 28 x 0.055 = 15786 N
Answers : (a) Radius of correctly banked turn = 550.3 m, (b) time required to turn
through 180° = 11.95 s and (c) thrust required during turn = 15,786 N
Remark:
The thrust available is given as 24525 N at sea level. If the thrust available is
assumed to be roughly proportional to (%), the thrust available at the chosen
altitude would be 24525 x 0.8%7 = 20978 N. This thrust is more than the thrust

required during the turn and the flight is possible.
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